Comparison of Irrigation with Povidone-Iodine Versus Normal Saline on Wound Infection After Open Appendectomy

Muhammad Abid Owais1, Syed Ali Haider2, Sidra Abbas3, Khalid Ahmed4, Saeed Ahmed5, Akram Rajput6

Abstract

Objective: Surgical site infections (SSIs) pose a continued problem to operating surgeons. It adds to the healthcare cost, increases morbidity and mortality and sometimes culminates in re-explorations. Rate of SSIs can be ameliorated by removing damaged or non-viable tissue, metabolic waste and wound exudates; this can be achieved by irrigation of surgical wound intraoperatively. Surgical wound irrigation can also be performed postoperatively. Even after giving prophylactic antibiotics and august aseptic measures, post-appendectomy wound infection remains soaring. The efficacy of povidone-iodine on non-incised skin is well known but its application as an intraoperative irrigation solution in open surgical wounds is not a mundane practice. Likewise prophylactic irrigation with normal saline solution to prevent wound infection has also turned out to be effective in some studies. The objective of this study is to compare the percentage of superficial SSI post-appendectomy, with intraoperative irrigation of subcutaneous plane using 1% povidone-iodine solution versus normal saline.

Methods: 200 cases of open appendectomy for acute appendicitis at Baqai Medical University, Karachi were randomly distributed into two arms. In group A, 0.9% Normal Saline was employed to irrigate subcutaneous tissue before skin closure while in group B irrigation with 1% diluted povidone-iodine solution was undertaken. The cases were assessed for infection in surgical wounds in line with Southampton wound grading system for five days after surgery and followed for thirty days.

Results: Mean age of participants of this study was 18.65 years. There were 100 patients in both groups and the groups were not different statistically in terms of age, gender and operative findings. A total of 38 (19%) out of 200 patients had Southampton grade 2 and above, signifying wound infection. Out of these, 29 (29%) were from Group A and 9 (9%) from Group B (p=0.001).

Conclusion: 1% diluted povidone-iodine irrigation of subcutaneous plane after appendectomy remarkably lowers the rate of SSI when compared with normal saline irrigation.

Keywords: Wound infection, appendectomy, povidone-iodine.

IRB: Approved by the Ethics Committee, Baqai Medical University. Dated: 5th March 2015.

(ASH & KMDC 24(3):138;2019)

Introduction

Acute inflammation of appendix is the foremost cause of acute abdominal presentations in young age group. It is prevalent in early adulthood but seldom occurs in middle age group and infants.

Prepubertal masculine to feminine ratio of 1:1 increases to 3:2 by 25 years of age1.

Appendectomy is the treatment of choice for acute appendicitis1. Post-operative wound infection after appendectomy stands as the most frequent reason of morbidity2. Appendicitis when non-perforated has a documented wound infection rate of lower than 10% on the other hand infection rate peaks to 15 - 20% when it comes to perforated appendicitis2. Diffuse peritonitis owes the highest infection rate (35%)2. Postoperative morbidity, increase in the duration of admission and the financial toll due to SSI adds to the misery of the pa-
tient and dispirits the surgeons. Local application of antibiotics or antiseptics lessens the incidence of wound infection after surgical interventions.

Povidone-iodine is a commonly employed antiseptic solution. It consists of iodide, polyvinylpyrrolidone with water and 1% available iodine. Broad spectrum of microorganisms are susceptible to its bactericidal activity. It starts functioning within thirty seconds and remains effective up to 14 hours after applying. The efficacy of povidone-iodine on non-incised skin is well documented, but its application as an intraoperative irrigation solution in open surgical wounds is not a mundane practice. This reluctance is because of concerns about its safety in open wounds. The increase in antibacterial activity of povidone-iodine with degree of dilution is evident in studies. In a manner that solutions of 0.1 - 1% have faster bactericidal compared to 10% full strength solution. The milder strength of 0.1 - 1% is not toxic to tissues and does not hamper healing and has approval for short span management of superficial acute wounds by Food and Drug Administration (FDA).

Normal saline is a frequently employed irrigation solution, due to its isotonicity and the fact that it does not interfere with wound healing. Hence, irrigation with normal saline is regarded as an easy and economical method to reduce surgical site infection.

Appendectomy for non-perforated appendicitis is classified as clean contaminated surgery. Several authors have proved that the use of pre-operative antibiotics is effective in preventing infective complications after surgery. Therefore, as a standard practice, patients undergoing appendectomy receive antibiotic prophylaxis 30 minutes to one hour prior to procedure.

Since junior surgeons are usually the operating surgeons in appendectomy cases, wound infection is not just a cause of discomfort to the patients but also comes as a dispiriting event for these young surgeons.

Both methods; namely normal saline irrigation and povidone-iodine irrigation are widely put to work for various types of wound infections. Both have turned out to be useful in the treatment surgical site infections after appendectomies too. This research was carried out to compare the frequency of superficial surgical site infections after appendectomy in patients irrigated with normal saline versus 1% povidone-iodine prior to skin suturing. If these procedures caused a decline in wound infection, this easy and economical method can be used to ameliorate surgical site infection.

Subjects and Methods

This randomized controlled trial (RCT) was carried out from July 2015 to December 2018 in the department of surgical sciences, Baqai Medical University, Karachi after approval of ethical review board. Sample size was derived by keeping level of significance 5% and confidence interval 90% utilizing WHO calculator for sample size. Non-probability consecutive sampling approach was employed. A total of 200 patients both male and female, above 12 years of age, diagnosed on clinical grounds as acute appendicitis or registered for interval appendectomy, going for emergency or elective open appendectomy were included in this study. Patients below 12 years were ruled out of the study. Diabetic, uremic, jaundiced patients, individuals with rheumatoid arthritis, compromised immunity, cancer patients with chronic illnesses, bed bound patients, patients on certain drugs i.e. steroids and cytotoxic drugs, those undergoing radiation therapy and patients having generalized peritonitis were excluded. Moreover, finding a synchronous pathology other than appendicitis also ruled out inclusion to the research. Out of the 23 patients, which were excluded from this research, 13 patients had generalized peritonitis while 10 were diabetic.

Informed and written consents were taken from all the participants of this research. Patients were randomly distributed into two arms; A (normal saline) and B (povidone iodine) with the help of computer-based randomization software.
Comparison of Irrigation with Povidone-Iodine Versus Normal Saline on Wound Infection After Open Appendectomy

randomizer). To control bias, a uniform protocol was undertaken which had a 10 minutes scrubbing with 1% povidone-iodine, a skin crease incision i.e. Lanz, minimal tissue manipulation, use of identical suture material namely polyglactin suture for tying the mesoappendix and the base of appendix. Same suture was employed to close the peritoneum, muscle layers and the sheath, whereby new pair of gloves were worn after closure of fascia to carry out irrigation and skin closure with a running non-absorbable 2/0 polypropylene monofilament suture. Before inducing anaesthesia, a single dose of cephalosporin 2nd generation and metronidazole were injected. In group A, after closure of external oblique, wound was irrigated with 10 ml normal saline, while in group B the subcutaneous tissue was irrigated with 10 ml of 1% povidone-iodine solution. Both solutions were sprayed into the subcutaneous plane of the wound by a 10ml syringe, left for 3 minutes before being mopped. Skin was closed with prolene 2/0 by subcuticle technique in all patients. Two further doses of 2nd generation cephalosporin along with metronidazole were infused intravenously in the postoperative period. Consultant surgeons (Assistant Professors & Senior Registrars) performed all operations. Postgraduate trainees, house officers and OT technicians assisted the procedures. Aseptic dry dressings were used to cover the surgical wounds in all participants, which were taken off on 2nd postoperative day by the primary surgeons prior to their discharge. All patients irrespective of group, had their surgical wounds evaluated on 5th postoperative day on their first follow up visit in the outpatient department for wound infection and followed on till the 30th post-operative day.

Data analysis was done with SPSS version 19. Mean was calculated for age and frequencies were calculated for qualitative data like gender, Southampton wound grade. Chi square test was applied between proportions for significant difference. Significance was taken as p<0.05.

Results

Out of 200 patients included in this study, 133 (66.5%) were male and 67 (33.5%) were female. Mean ± SD age of patients was 18.65 ± 4.76 years. Ages of patients ranged between 12 years to 40 years (Table 1). The difference in mean age of patients in Group A (18.59 ± 4.84 years) and Group B (18.72 ± 4.70 years) was not statistically significant (p=0.848).

There were 100 patients in both groups and no statistically significant difference was found between groups in gender distribution (Table 2).

5 of the total 200 patients were operated electively, while, the rest of 195 underwent emergency appendectomies. Out of the 5 elective operations, 3 were from group A, whereas, 2 were from group B. Operative findings were noted, 127 patients had no fluid around the appendix, 56 had serous fluid and 17 had purulent fluid locally. The groups were not different statistically in terms of operative findings (Table 3).

The surgical wounds of patients in both groups were assessed on 5th post-operative day for SSI on the first follow up in outpatient clinic. The wounds were kept in continued follow-up until 30th post-operative day.

38 (19%) out of the 200 patients had Southampton grade 2 and above, signifying wound infection. All these patients had appendectomies in emergency. Out of these 29 (29%) were from Group A and 9 (9%) from Group B. Thus, the difference in wound infection incidence between Normal Saline irrigation group A and Povidone Iodine Irrigation Group B was statistically significant (p=0.001).
About 25 (12.5%) patients developed severe wound infection signified by serous or purulent discharge (Southampton wound grade 3 & 4), 21 were from Normal Saline irrigation group A and 4 were from group B. The difference between development of serous discharge (Southampton 3) and purulent discharge (Southampton grade 4) in appendectomy wounds amongst group A and B was statistically significant. None of the patients developed deep tissue infection (Southampton grade 5) (Table 4).

Discussion

Despite medical advances, SSI after appendectomy continues to be a major problem\(^2\). This research was undertaken to compare two substances (normal saline versus povidone-iodine) that may help in ameliorating the wound infection rate\(^5,9\). The overall frequency of wound infection (Southampton grade 2 or more) in our study was 19% (29% for normal saline group and 9% for povidone-iodine group) which is in conjunction to broad ranging post-appendectomy wound infection rate of 2.1 to 20% cited in national and international literature\(^5,13\).

Comparison of operative findings revealed no difference amongst the two groups statistically (p-value >0.05) in ameliorating the wound infection rate\(^5,9\). The overall frequency of wound infection (Southampton grade 2 or more) in our study was 19% (29% for normal saline group and 9% for povidone-iodine group) which is in conjunction to broad ranging post-appendectomy wound infection rate of 2.1 to 20% cited in national and international literature\(^5,13\).

In studies conducted by Haider S and Sallam A, though povidone iodine failed to slake SSI percentage but positively lowered the incidence of purulent discharge from wounds, thus ameliorated the severity of wound site infection\(^14,15\). Similarly, Chundamala J reviewed 15 studies, out of which 5 studies did not show povidone-iodine irrigation to be significantly more beneficial at preventing surgical site infection in comparison to normal saline, water or no irrigation. But the other 10 studies proved povidone-iodine irrigation to be significantly more beneficial in preventing surgical site infection when compared with normal saline, water or no fluid-irrigation\(^7\). The outcomes of these studies show a fruitful role of povidone-iodine irrigation in reducing surgical site infection when compared to irrigation with normal saline, which is in accord with the results of our study.

Table 1. Sample Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Mean Age ± SD (Years)</th>
<th>Age Range (Min - Max)</th>
<th>Emergency Cases</th>
<th>Elective Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>18.59 ± 4.84</td>
<td>13 - 40</td>
<td>3(3%)</td>
<td>97(97%)</td>
</tr>
<tr>
<td>Group B</td>
<td>18.72 ± 4.70</td>
<td>12 - 39</td>
<td>2(2%)</td>
<td>98(98%)</td>
</tr>
<tr>
<td>All Participants</td>
<td>18.65 ± 4.76</td>
<td>12 - 40</td>
<td>195(97.5%)</td>
<td>5(2.5%)</td>
</tr>
</tbody>
</table>

Table 2. Gender Distribution

<table>
<thead>
<tr>
<th>Gender</th>
<th>Total Patients n=200(%)</th>
<th>Group A n=100(%)</th>
<th>Group B n=100(%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>67(33.5)</td>
<td>33(33)</td>
<td>34(34)</td>
<td>0.903</td>
</tr>
<tr>
<td>Male</td>
<td>133(66.5)</td>
<td>67(67)</td>
<td>66(66)</td>
<td>0.931</td>
</tr>
</tbody>
</table>

Table 3. Operative findings

<table>
<thead>
<tr>
<th>OPERATIVE FINDINGS</th>
<th>Group A n=100 (%)</th>
<th>Group B n=100 (%)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fluid</td>
<td>64(64)</td>
<td>63(63)</td>
<td>0.929</td>
</tr>
<tr>
<td>Serous</td>
<td>27(27)</td>
<td>29(29)</td>
<td>0.789</td>
</tr>
<tr>
<td>Purulent</td>
<td>9(9)</td>
<td>8.5(8.5)</td>
<td>0.808</td>
</tr>
</tbody>
</table>

Comparison of operative findings revealed no difference amongst the two groups statistically (p-value >0.05)

Table 4. Comparison of wound infection between normal saline versus povidone-iodine after appendectomy

<table>
<thead>
<tr>
<th>Southampton Wound grade</th>
<th>Total Patients n=200(%)</th>
<th>Group A Normal saline irrigation n=100(%)</th>
<th>Group B Povidone iodine irrigation n=100(%)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 0: Normal healing</td>
<td>119(64.5)</td>
<td>50 (50)</td>
<td>69 (69)</td>
<td>0.082</td>
</tr>
<tr>
<td>Grade 1: Normal healing + mild Bruising</td>
<td>43 (21.5)</td>
<td>21 (21)</td>
<td>22 (22)</td>
<td>0.879</td>
</tr>
<tr>
<td>Grade 2: Erythema/tenderness/heat</td>
<td>13(6.5)</td>
<td>08 (8)</td>
<td>05 (5)</td>
<td>0.405</td>
</tr>
<tr>
<td>Grade 3: Serous discharge</td>
<td>13(6.5)</td>
<td>11 (11)</td>
<td>02 (2)</td>
<td>0.013*</td>
</tr>
<tr>
<td>Grade 4: Purulent discharge</td>
<td>12(6)</td>
<td>10 (10)</td>
<td>02 (2)</td>
<td>0.021*</td>
</tr>
<tr>
<td>Grade 5: Deep tissue infection</td>
<td>0(0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>-</td>
</tr>
</tbody>
</table>

Comparison of wound infection after appendicectomy revealed that irrigation of povidone-iodine resulted in significantly lower SSI rate and incidence of Southampton grade 3 & 4 wound postoperatively (p-value <0.05).
Normal saline is a frequently employed irrigation solution, owing to its isotonic nature and the fact that it does not interfere with wound healing\(^8\). Moreover, it is in common use to clear wounds from blood clots and nonviable tissue. Carlos and Cervantes studied syringe pressure irrigation of subcutaneous tissue with normal saline, and they inferred that the rate of postoperative SSI was remarkably slaked in complicated (perforated) cases by this particular intervention following appendectomy\(^{16}\). Jaleel Abdul Razzak also came to the understanding that normal saline wound irrigation results in reduction in the incidence of postoperative SSI after appendectomy\(^{17}\). Meticulous irrigation with saline is an effectual method in patients having perforated appendicitis and wound infection as observed by Feizi in his study\(^{18}\).

In their work done at Lahore, Shah and his co-researchers found that 13.1\% of open appendectomy patients had postoperative superficial wound infection\(^{19}\). However, lower infection rates were found in other studies. Ahmed et al and Chaudry et al in their respective studies observed wound infection in 5\% and 6.4\% of the study population respectively\(^{20,21}\). The causes for this variable proportion of SSI post-appendectomy is the inconsistent or non-specific definitions of superficial surgical site infection in these studies. In fact majority of the local researches discussed above were deprived of any definition or criteria to mark wound infection. This study applied Southampton wound grading system for grading the postoperative wound infection, which is a viable wound grading classification alongside ASEPSIS score and Centers for Disease control and Prevention\(^\text{\textit{(}}\text{\textit{CDC}}\text{\textit{)}}\) classification and is employed by many authors globally\(^{23}\).

In this study the povidone-iodine irrigation lessened the incidence of purulent discharge from operative site (p-value=0.030). The favourable outcome of povidone-iodine use was also reported by Hiramatsu and co-workers in their study on 59 patients who were assigned into two groups randomly. One group was subjected to povidone-iodine gel application on the wound site before skin closure, whereas in the other group skin was closed without comparison of irrigation with povidone-iodine versus normal saline on wound infection after open appendectomy

![Southampton wound scoring system](https://example.com/southampton.png)

Fig 1. Southampton wound scoring system [Adapted from Bailey IS et al, BMJ 1992; 304: 469-71]

![Comparison of wound infection between normal saline versus povidone-iodine after appendectomy](https://example.com/comparison.png)

Fig 2. Comparison of wound infection between normal saline versus povidone-iodine after appendectomy (x-axis shows Southampton grades whereas number of cases falling in each Southampton grade is represented on Y-axis.)
any application of povidone-iodine gel. Infection ensued in wounds of 18 patients, less in povidone-iodine gel group compared to control group i.e. 5 (16%) versus 13 (46%) (p<0.05)24.

In a research having 200 clean cases both general and gynaecological, had one incident of wound infection in the 100 cases which had their wounds washed with normal saline whereas in the other arm with no intervention 8 incidents of wound infection were recorded. Staphylococcus aureus stood out to be the commonest organism while other notable organisms isolated were Streptococcus Pyogenes, Proteus, Klebsiella, E coli and Pseudomonas. MRSA was not detected9.

Vinay and colleagues published the results of their study in 2019 which showed wound infection rate in povidone-iodine irrigation group (10%) while in normal saline irrigation group (7.8%)25. They concluded that infection rate did not change when the wound was irrigated with normal saline or povidone-iodine solution. However, they studied the irrigation on laparotomy wounds and their results are not in accordance with the outcomes of our study.

Literature on both normal saline and povidone-iodine irrigation has varied results in terms of their effectiveness in preventing the surgical site infections. Our study ran a comparison of both solutions and found povidone-iodine more effective in preventing SSI after appendectomy than normal saline.

Conclusion

This study found that rate of SSI is significantly lowered after intraoperative irrigation of povidone-iodine versus normal saline irrigation. The occurrence of severe wound infection was also reduced in patients who had their wounds irrigated with povidone-iodine. Therefore, it is inferred that subcutaneous tissue irrigation with 1% diluted povidone-iodine after appendectomy remarkably reduces the surgical site infection rate in comparison to normal saline irrigation.

Conflict of Interest

The authors of the study do not have any conflict of interest with findings of authors of previous studies.

References

Comparison of Irrigation with Povidone-Iodine Versus Normal Saline on Wound Infection After Open Appendectomy

Comparison of Irrigation with Povidone-Iodine Versus Normal Saline on Wound Infection After Open Appendectomy

