Evaluation and Comparison of Anti-Epileptic Activity of Methanolic Extracts of Seeds of *Cuminum Cyminum L.* and *Centratherum Anthelminticum L.* in Seizure Model

Raana Mahmood¹, Rahila Najam², Mohammad Irfan Khan³, Talat Tariq⁴, Jawairia Jawed⁵

Abstract

Objective: Evaluation and comparison of anti-epileptic activity of methanolic extracts of seeds of *Cuminum cyminum L.* and *Centratherum anthelminticum L.* in strychnine-induced seizure model.

Methods: The study was conducted in the Department of Pharmacology, University of Karachi. After 15 days of dosing, experiment was performed. A total of 40 healthy mice were selected from animal house of the Pharmacology department, University of Karachi, and were equally divided into four groups. Group 01 was on DMSO (dimethyl sulphoxide) organic solvent as control; Group 02 was on methanolic extract of *Cuminum cyminum L*. (500 mg/kg); Group 03 was on methanolic extract of *Centratherum anthelminticum L*. (200 mg/kg) and Group 04 was on reference drug diazepam (3 mg/kg). On the day of experiment, after giving doses of DMSO, methanolic extract of *Cuminum cyminum L*., methanolic extract of *Centratherum anthelminticum L*. and diazepam, respectively to all groups, strychnine was administered and animals were observed for latency period and duration of jerks. Mortality rate was also evaluated.

Results: Group 02 and 03, receiving methanolic extracts of *Cuminum cyminum L*. and *Centratherum anthelminticum L*. showed significant seizure protection as observed by delayed seizure onset ($p \le 0.001$) and decreased total duration of convulsions in groups 02 and 03 ($p \le 0.01$, $p \le 0.05$) respectively. The mortality rate also decreased significantly ($p \le 0.05$) in comparison with group 01.

Conclusion: Anticonvulsant activity of methanolic extracts of *Cuminum cyminum L*. and *Centratherum anthelminticum L*. could be due to their antioxidant activity and further enhanced by potentiation of GABAergic and glycinergic activity. Further studies are required to confirm exact mechanism of action.

Keywords: Cuminum cyminum, convulsions, seizures, dimethyl sulphoxide, strychnine.

IRB: Approved by Board of Advanced Studies and Research, University of Karachi. Dated: 31st March 2014. BASR/No./01813/Pharm (This study is part of the research work of the PhD).

Citation: Mahmood R, Najam R, Khan MI, Tariq T, Jawed J. Evaluation and Comparison of Anti-Epileptic Activity of Methanolic Extracts of Seeds of *Cuminum Cyminum L.* and *Centratherum Anthelminticum L.* in Seizure Model [Online]. Annals ASH KM&DC 2018;23:.

(ASH & KMDC 23(1):191;2018

Introduction

Medicinal herbs are the potential sources of drugs for therapeutic aids. They have played a significant role in health systems all over the world

Correspondence: Raana Mahmood Department of Pharmacology and Therapeutics, Karachi Medical & Dental College Email: drranazafar@gmail.com Date of Submission: 23rd November 2017 Date of Acceptance: 5th March 2018 and are used for a number of different diseases and also for maintaining proper health. The biological properties of plants are used in alternative medicine. Currently, several scientific investigations are being conducted to determine and isolate the active compounds of plants. Medicinal plants play a vital role in the development of new drugs. Today, 80% of the developing population depends on traditional medicine. Herbal drugs referred to as plant materials or herbs, involve the use of whole or parts of plant. The *Cuminum cyminum L*. and *Centratherum anthelminticum L*. are used as analgesic, antipyretic, anti-inflammatory and anti-oxidant drugs. It

¹ Department of Pharmacology and Therapeutics,

Karachi Medical & Dental College

² Department of Pharmacology, University of Karachi

³ Department of Pathology, Karachi Medical & Dental College ⁴ Department of Chemistry,

Federal Urdu University of Arts, Science & Technology

⁵ Department of Paediatrics, Civil Hospital Karachi

has been observed from many studies that phenolic contents of plant have antioxidant and disease-curing activity^{1,2}.

Seeds of *Cuminum cyminum L*. (black cumin) are widely used in ayurvedic medicine. It is also used as a spice in Indian and Pakistani foods because of its specific aroma and hot flavouring effect. It is locally called as 'Shahijeera' in India^{3,4}. It is a flowering plant and belongs to Apiaeceae (Umbelliferae) family. Cumin plants are usually cultivated all over the world because of their culinary use⁵.

The phytochemicals reported in ripe cumin seeds are: essential oils, rich monoterpene aldehydes, cumin aldehyde, terpene hydrocarbon, phenyl ethanol and fixed oil (p-cymene). In addition to fixed oils, proteins, cellulose, sugar and also some minerals such as calcium, potassium, sodium, iron, magnesium and phosphorus^{6,7}. Ancient Greeks kept them as holy seeds because these seeds are mentioned in the Bible⁸. The flavonoids and phenolic compounds of cumin are responsible for its antioxidant activity by quenching free radicals^{9,10}. The decoction of cumin seeds is taken as health drink because of the presence of vitamin A, B,C and E and minerals, like iron, copper, potassium, calcium, in it¹¹.

Centratherum anthelminticum L. belongs to the family Astraceae. Its local names are 'Kali Ziri', 'Somraj' JangliJiri' and bitter cumin⁴. Seeds are 4.5-6 mm long, pointed from one side and tapered on the other, dark-brown in colour with a characteristic odour and bitter taste. Phytochemicals present in *Centratherum anthelminticum L.* are carbohydrates, phenolic compounds, tannins, flavonoids, proteins, saponins, sterols, lipids and constituents like stearic acid, palmitic acid, mysteric acid, oleic, monohydroxy-oleic acids, linoleic acid, vernolic acid and resins^{1,13}. In Travancore and Ceylon, it is used for febrile convulsions. Its seeds are grounded with lime juice and applied to destroy pediculi and also given in abscesses^{14,15}.

Epilepsy is one of the chronic central nervous system diseases. It is characterised by unpredict-

able, recurrent, rhythmic electrical firing of neurons of brain called seizures. Epileptic seizures are classified into two categories partial (focal) and generalised depending on the area of the brain involved. Epilepsy may be associated with chemical imbalance, hypoxia or hypoglycaemia etc. After introduction of many new anti-epileptic drugs and combination therapies, still 25-30% cases are resistant and difficult to control. Thus, the toxicity and side effects of these allopathic medicines is attracting the use of herbal medicines. Herbs are usually considered safe since they belong to natural sources. Therefore, there is a need to scrutinize for highly effective as well as safe anti-epileptic therapy in order to minimise drug-related toxicity. In this study, we are investigating and comparing the antiepileptic potential of methanolic extracts of Cuminum cyminum L. and Centratherum anthelminticum L. seeds in strychnine-induced seizure model.

Materials and Methods

The seeds of *Cuminum cyminum L*. and *Centratherum anthelminticum L*. were bought from the main merchant market of Saddar, Karachi. Authenticated by a senior scientist of Pharmacy at Hamdard University. The samples of seeds were also submitted in the Museum of Pharmacognosy, University of Karachi with the voucher #00111 and 00112 respectively for future reference.

The seeds of *Cuminum cyminum L.* and *Centratherum anthelminticum L.* were soaked in methanol for fifteen days. After 15 days solvent was filtered through filter paper and evaporated by rotary evaporator under reduced pressure. The concentrated extracts were used for the study.

A total of 40 healthy albino mice (either sex) weighing 25-30 g were selected for the study¹⁶. All animals were bred locally in the animal house of Department of Pharmacology, University of Karachi, housed in iron cages, fed on regular pellet diet and water ad libitum. Animals were kept under standard environmental conditions that are: temperature $26 \pm 2^{\circ}$ C, humidity 55 ± 5% and a cycle of light and

dark 12/12, and were handled with specifications provided in the Helsinki's Resolution, (1964). Board of Advanced Studies and Research (BASR) University of Karachi has approved the study protocol, resolution # 10(P)11 dated 21.02.2014 and 03.03.2014.

Sample size was calculated by Resource equation method¹⁶. All mice were divided into four groups, each group containing ten mice (n = 10). Methanolic extracts of Cuminum cyminum L. and Centratherum anthelminticum L. were insoluble in water so it was dissolved in 10% DMSO (dimethlysulphoxide) an organic solvent. Group 01: all mice were given 0.25 ml of DMSO daily (control group). Group 02: methanolic extract of Cuminum cyminum L. was administered with a dose of 500 mg/kg¹⁷. The average weight of the mice was 25 g, by making the solution 500 mg/10 ml, 0.25 ml was given to each daily(12.5 mg/25 g). Group 03: Methanolic extract of Centratherum anthelminticum L. was given a dose of 200 mg/kg by making a solution 200 mg/10 ml and 0.25 ml was given to each daily¹⁸. Group 04: all mice were given diazepam 3 mg/kg i.e. 0.75 mg/25 g¹⁹.

Strychnine is used as a chemical convulsing agent²⁰. It is administered intraperitoneally at a dose of 0.1 mg/kg intraperitoneally (IP). Fractional dilution was done to give 0.025 mg/25 g and animals were observed for latency and duration of convulsions and further till 48 h for mortality after 24 h.

The statistical analysis was carried out by using SPSS version 19 for windows. Data was analysed by using one way ANOVA followed by post hoc Tukey's test for comparisons between groups. The results were presented as mean \pm SD (n= 10) varies with p≤0.05 considered to be statistically significant.

Result

Table 1 on comparison of Group 02 and 03 with Group 01 (the control group), regarding seizure protection, latency of seizures was significantly (p \leq 0.001) increased in both groups i.e. Cuminum

group and Centratherum anthelm-inticum L. group. While the duration of seizures was significantly (p≤0.01) decreased in Cuminum cyminum L. group and non-significantly decreased in Centratherum anthelminticum L. group. Mortality rate was reduced significantly (p≤0.05) in both groups 02 and 03 L. and Cuminum cyminum Centratherum anthelminticum L. groups. While on comparison to diazepam group (04), latency was significantly decreased ($p \le 0.05$) and ($p \le 0.01$) respectively in Cuminum cyminum L. and Centratherum anthelminticum L. groups.

Table 1. Effect of treatment on strychnine-induced seizures

Groups	Latency (sec)	Duration (of seizure)	Mortality after 24h
Control(DMSO) Cuminum cyminum Centratherum anthe -Iminticum	$\begin{array}{l} 115.86 \pm 4.40 \\ 203.93 \pm 10.24^{***\#} \\ 181.24 \pm 4.56^{***\#\#} \end{array}$	31.00 ± 3.86 $24.54 \pm 1.94^{**}$ $30.62 \pm 1.54^{\#}$	8/10 5/10*# 5/10*#
Diazepam (standard)	$229.30~\pm~7.96^{***}$	$23.18 \pm 2.79^{***}$	0/10***

n=10, Values are mean \pm SD, significance calculated by using one way ANOVA. Followed by post hoc Tukey's test and LSD, according to which ${}^{*t}p \leq 0.05$, ${}^{**\#t}p \leq 0.01$, ${}^{***\#t}p \leq 0.001$ were considered significant, very significant and highly significant as compared to control and standard, respectively.

Discussion

The results of present study demonstrate that methanolic extracts of Cuminum cyminum L. and Centratherum anthelminticum L. possess anticonvulsant effect triggered by strychnine, a glycine-receptor antagonist. Strychnine is a poisonous alkaloid, obtained from Strychnous nux-vomica seeds. It is a neurotoxin and acts on spinal cord stimulation. Strychnine exerts its effects by blocking the binding of glycine to the glycine-sensitive chloride channel within the spinal cord. Normally, when glycine binds to this channel, it causes increased inward flow of chloride resulting in hyperpolarisation and blocking cells to propagate nerve signals. These inhibitory effects of glycine are blocked by strychnine intoxication, which consequently result in increased nerve signal transmission. Strychnine induced excitation leads to unregulated muscle spasm, extensor muscle contractions, convulsions followed by death due to respiratory paralysis²⁵.

Pre-experiment dosing with methanolic extracts showed its protective effects against convulsions. The measured parameters, the latency to seizure onset and duration of seizures seemed to be most sensitive parameters when comparing with anticonvulsant effects, previous studies showed depressed seizure activity in animal model of epilepsy after exogenous glycine administration^{21,26}. Furthermore, other studies suggested synergistic anticonvulsant effect when glycine was administered with GABA_A (gamma-aminobutyric acid) receptor agonist²⁷. Anticonvulsant activity of methanolic extracts of Cuminum cyminum L. and Centratherum anthelminticum L. may be attributed due to inhibition of strychnine sensitive glycine receptors alone or by concomitant potentiation of glycinergic and GABAergic activities which in turn may amplify its anti-epileptic activity.

Neuroprotective effects of vitamin E have already been identified previously due to its antioxidant characteristics. Vitamin E could exert anti-epileptic effect by inhibiting free radical formation^{28,29}. Results of another study showed that vitamin E administration reduces seizure frequency and intensity by decreasing oxidative stress in brain animals²⁹. cells of experimental The phytochemicals of Cuminum cyminum L. i.e. vitamins and minerals are also responsible for its antioxidant role¹¹. However, previous studies indicate that neurons involved in oxidative injury create a toxic environment within the hippocampus as a result of induction of reactive oxygen species activation and propagation to apoptosis which ultimately destroy hippocampal neurons^{22,30}.

Anticonvulsant effect of methanolic extracts of *Cuminum cyminum L.* and *Centratherum anthelminticum L.* could be attributed to its protective effect against cellular injury induced by strychnine in hippocampal neurons. Exact mechanism of this resistance to hippocampal injury is currently unclear it can be assessed by measuring superoxide dismutase and glutathione levels. The anticon-

vulsant activity of diazepam (benzodiazepines) is by modulating the activity on GABA_A receptors, which also causes muscle relaxation, sedative effects and amnesia. The disadvantage of diazepam is its tolerance, depression of CNS functions i.e. mental alertness and motor co-ordination^{23,24}.

Conclusion

The results of our study indicate that methanolic extracts of *Cuminum cyminum L.* and *Centratherum anthelminticum L.*possess anticonvulsant activity, which may justify its use as an alternative medicine in order to prevent drug related toxicities and drug resistance. The proposed anticonvulsant may involve potentiation of both GABAergic and glycinergic stimulatory mechanism. Antioxidant activity can amplify its anti-epileptic activity. The exact mechanism of action requires detailed molecular study.

Conflict of Interest

Authors have no conflict of interests and no grant/funding from any organisation.

References

- Mirhosseini LM, Nejad GM, Bahraminejad A, Golkar P, Mohammadinejad5 Z. (2011) Evaluation of cumin (Cuminum cyminum L.) landraces under drought stress based on some agronomic traits. African Journal of Plant Science 2011;05:749-52. Available from: https://www.researchgate.net/ publication268435574_Evaluation_of_cumin_Cuminum_ C y m i n u m __l a n d r a c e s _ u n d e r _ d r o u ght_stress_based_on_some_agronomic_traits. Accessed on February 19, 2018.
- Tsao R, Akhtar MH. Nutraceuticals and functional foods: I. Current trend in phytochemical antioxidant research [Online]. J Food Agr Environ 2005;3:10-7. Available from: http://agris.fao.org/ agris-search/search.do?recordID=FI2016100357. Accessed on February 13, 2018.
- 3. Kapoor LD. Handbook of Ayurvedic Medicinal Plants, CRC Press, New Delhi, 2001. p. 112.
- Chopra RN, Nayar SL and Chopra IC, Glossary of Indian Medicinal Plants, CSIR Publication, New Delhi, 2002. p. 58-59.
- Thippeswamy NB, Naidu KA. Antioxidant potency of cumin varieties-cumin, black cumin and bitter cumin-on antioxidant systems [Online]. Eur Food Res Technicol 2005; 220:472-6. Available from:

https://link.springer.com/article/10.1007/s00217-004-1087-y. Accessed on February 13, 2018.

- Rebey IB, Zakhama N, Karoui IJ, Marzouk B. Polyphenol composition and antioxidant activity of cumin (Cuminum cyminum L.) seed extract under drought. J Food Sci 2012;77:C734-9. [DOI: 10.1111/j.1750-3841.2012.02731.x].
- Gachkar L, Yadegari D, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I. Chemical and biological characteristics of Cuminum cyminum and Rosemarinusofficinalis essential oils [Online]. Food Chem 2007:102;898-904. Available from: https://www.sciencedirect.com/science/article/pii/ S0308814606005061?via%3Dihub. Accessed on February 13, 2018.
- Zohary D, Hopf M, Weiss E. Condiments. In: Zohary D, Hopf M, Weiss E, editors. Domestication of plants in the old world. 3rd ed. New York: Oxford University Press; 2000. p. 163-5.
- Bouwmeester HJ, Gershenzon J,Konings MC, Croteau R. Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. I. Demonstration of enzyme activities and their changes with development. Plant Physiol 1998;117:901-12.
- 10. DeMartino L, DeFeo V, Fratianni F, Nazzaro F. Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components. Nat Prod Commun 2009;4:1741-50.
- Srivastava KC, Mustafa T. Pharmacological effects of species: Eicosanoid modulating activities and their significance in human health [Online]. Biomed Rev 1994;2:15-29. Available from: http:// www.bgscb.org/blog/wp-content/uploads/2012/02/ Vol2-15-30.pdf. Accessed on February 13, 2018.
- Purnima A, Koti BC, Tikare VP, Viswanathaswamy AHM, Thippeswamy AHM, Dabadi P. Evaluation of analysis and antipyretic activities of Centratherum anthelminticum (L) kuntze seed [Online]. Indian J Pharm Sci 2009;71:461-4. Available from: http:// www.ijpsonline.com/articles/evaluation-of-analgesic-and-antipyretic-activities-of-icentratherumanthelminticumi-l-kuntze-seed.html. Accessed On February 13, 2017.
- Tian G, Zhang U, Zhang T, Yang F, Ito Y.Separation of flavonoids from the seeds of Vernonia anthelmintica Willd by high-speed countercurrent chromatography [Online]. J Chromatogr 2004;1049:219-22. Available from: https:// www.sciencedirect.com/science/article/pii/ S0021967304012762. Accessed on February 13, 2018.
- 14. Iwalewa EO, Iwalewa OJ, Adeboye JO. Analgesic antipyretic, anti-inflammatory effects of methanol, chloroform and ether extracts Vernonia cinerea less leaf. J Ethnopharmacol 2003;86:229-34.

- 15. Ashok P, Koti BC, Thippeswamy AHM, Tikare VP, Dabadi P, Viswanathaswamy AHM. Evaluation of antiinflammatory activity of centratherum anthelminticum (L)kuntze seeds [Online]. Indian J Pharm Sci 2010:72;697-703. Available from: http:// www.ijpsonline.com/articles/evaluation-of-antiinflammatory-activity-of-centratherumanthelminticum-l-kuntze-seed.html. Accessed on February 13, 2018.
- 16. Festing MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J 2002;43:244-58.
- Sinoriya P, Irchhaiya R, Sahu G, Kumar S.Anticonvulsant and muscle relaxant activity of the ethanolic extract of stems of Dendrophthoe falcata (Linn. F.) in mice. Indian J Pharmacol 2011;43:710-713. Available from: https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC3229791/. Accessed on February 19 2018.
- Ara J, Sultana V, Qasim R, Ahmad VU. Hypolipidaemic activity of seaweed from Karachi coast. Phytother Res 2002;16:479-83. [DOI: 10.1002/ptr.909].
- Khatoon H, Najam R, Mirza T, Sikandar B, Ishaq H, Anser H. Evaluation of anticonvulsant and neuroprotective effects of camel milk in strychnine-induced seizure model [Online]. Asian Pac J Trop Dis 2015;5:817-20. Available from: https:// www.sciencedirect.com/science/article/pii/ S2222180815609379. Accessed on February 13, 2018.
- Asif M. Role of some nutritional complements and biological supplements in the management of epilepsy [Online]. Curr Sci Perspect 2015;1:1-11. Available from: http://bosaljournals.com/csp/ images/pdffiles/1CSP.pdf. Accessed on February 13, 2018.
- 21. Chowdhury D. New drugs for the treatment of epilepsy: a practical approach [Online]. J Assoc Physicians India 2013;61:19-39. Available from: http://wwww.japi.org/august_special_issue_2013_epilepsy/05_new_drugs_for_the.pdf. Accessed on February 13, 2018.
- Mathur S, Sen S, Ramesh L, Kumar MS. Utilization pattern of antiepileptic drugs and their adverse effects in a teaching hospital [Online]. Asian J Pharm Clin Res 2010;3:55-9. Available from: http://www.ajpcr.com/Vol3Issue1/264.pdf. Accessed on February 13, 2018.
- Goldenberg MM. Overview of drugs used for epilepsy and seizures: etiology, diagnosis and treatment. P T 2010;35:392-415.
- 24. Amabeoku G, Chandomba R. Strychnine-induced seizures in mice: the role of noradrenaline. Prog Neuro psychopharmacol Biol Psychiatry 1994;18:753-63.

- Brams M, Pandya A, Kuzmin D, van Elk R, Krijnen L, Yakel JL, et al. A structural and mutagenic blueprint for molecular recognition of strychnine and d-tubocurarine by different cys-loop receptors. PLoS Biol 2011;9:e1001034. [DOI: 10.1371/ journal.pbio.1001034].
- Cherubini E, Bernardi G, Stanzione P, MarcianiMG, Mercuri N. The action of glycine on rat epileptic foci [Online]. Neurosci Lett 1981;21:93-7. Available from: https://www.sciencedirect.com/science/article/pii/0304394081900641. Accessed on February 13, 2017.
- Seiler N, Sarhan S. Synergistic anticonvulsant effects of a GABA agonist and glycine [Online]. Gen Pharmacol 1984;15:367-69. Available from: https:// www.sciencedirect.com/science/article/pii/ 0306362384900181. Accessed on February 13, 2018.
- 28. Hoshida S, Hatano M, Furukawa M, Ito M. Neuroprotective effects of vitamin E on adult rat

motor neurones following facial nerve avulsion [Online]. Acta Otolaryngol 2009;129:330-6. Available from: http://www.tandfonline.com/doi/full/ 10.1080/00016480802210431. Accessed on February 13, 2018.

- Kiasalari Z, Roghani M, Khalili M, Shafii S. Antiepileptic effect of vitamin E on kainic acid-induced lobe epilepsy in rats [Online]. Thrita 2012;1:27-29. Available from: http:// thritajournal.com/en/articles/18141.html. Accessed on February 13, 2018. [DOI: 10.5812/thrita.4265].
- Buenz EJ, Sauer BM, LaFrance-Corey RG, Deb C, Denic A, German CL, et al. Apoptosis of hippocampal pyramidal neurons is virus independent in a mouse model of acute neurovirulent picornavirus infection [Online]. Am J Pathol 2009;175:668-84. [DOI: 10.2353/ajpath.2009.081126]. Available from: http://ajp.amjpathol.org/article/S0002-9440(10)60580-9/fulltext. Accessed on February 13, 2017.